KAPASITASGROUND WATER TANK MEP CONSULTAN BLOGSPOT COM. GALIHSANTOSA ADHIATMA BLOG KEBUTUHAN AIR SISTEM HYDRANT. MENGHITUNG KEBUTUHAN AIR BERSIH AMP TANDON AIR. May 2nd, 2018 - Analisa Perhitungan Perencanaan Pipa Air Bersih Mengetahui Dimensi Pipa Air Bersih dari Ground Water Tank ke Roof rumus Hazen Williams Kapasitas pompa yang
b pengaturan kaveling dalam blok, yaitu perencanaan pembagian lahan dalam blok menjadi sejumlah kaveling/petak lahan dengan ukuran, bentuk, pengelompokan dan konfigurasi tertentu. c) pengaturan bangunan dalam kaveling, yaitu perencanaan pengaturan massa bangunan dalam blok/kaveling. 6) Identitas Lingkungan
Prosesselanjutnya ketika struktur pondasi sudah selesai dikerjakan, kepingan panel & bahan FRP sudah tiba di lokasi, maka teknisi kami akan dikirimakan untuk melakukan perakitan panel tank. Lama pengerjaan untuk 1 unit panel tank berkisar dari 2 s/d 3 minggu, semua tergantung dari kondisi cuaca dan ijin mengerjakan di lokasi tersebut.
dalamperencanaan sistem plambing air bersih, terdapat hal penting yang harus diperhatikan, yaitu kualitas air yang akan didistribusikan, sistem penyediaan air yang akan digunakan, pencegahan pencemaran air dalam sistem, laju aliran dalam pipa, kecepatan aliran dan tekanan air, serta permasalahan yang mungkin timbul jika dilakukan penggabungan
Sumurdalam (Deep Well) Sumur dalam sebagai sarana penyediaan air bersih berupa Sumur Air Tanah Dalam dibuat dengan mengebor tanah pada kedalaman lebih dari 30 meter. Sehingga diperoleh air sesuai dengan yang diharapkan atau tergantung dari kondisi hidrogeologi dan izin yang diberikan oleh Dinas Pemerintahan setempat.
PedomanTeknis Bangunan Rumah Sakit, Ruang Rawat Inap ini bertujuan untuk. memberikan petunjuk agar dalam perencanaan dan pengelolaan suatu bangunan Ruang. rawat inap di rumah sakit memperhatikan kaidah-kaidah pelayanan kesehatan, sehingga. bagunan Ruang rawat inap yang akan dibuat dapat menampung kebutuhan-kebutuhan.
Superwinter Deals! 5,000 Litre Duraplas Underground Water Tank (Under Yard Model) (Nominal Dimensions: 2780mm Width x 3500mm Length x 950mm Height, Shot Weight: 325kg) A larger version of the LU3000. The larger water storage capability of the LU5000 make it the ideal tank for your unit development. Small block + large home = space issue!
Kamimenjual Play ground untuk tempat wisata ,sekolah dan tamaan. kami telah berpengalaman dalam hal membuat play ground. kami memiliki ahli fiber dan enginerr yang proffesional dan telah berpengalaman dalam hal pembangunan play ground.Kami telah lebih dari 10 tahun menerima permintaan pembuatan playground, outbound, dan water park. selain itu kami juga siap membuat barang-barang sebagai berikut:
ZG6OoKg. 1 This design excel sheet will help you to design a water tank. design excel sheet is here below Attachments Design Of Water KB Views 1,639 2 Dear Engineer, If you add reinforcement it will be more usefull. what about axial tension and compression?.The worksheet is silent about this. 3 My Rectangular tank capacity is it is constructed on the ground
DescriptionAbstract Document Details Table of Contents Errata Info Return/Exchange Policy Notes/Preview Description This guide presents recommendations for materials, analysis, design, and construction of concrete-pedestal elevated water storage tanks, including all-concrete and composite tanks. Composite tanks consist of a steel water storage vessel supported on a cylindrical reinforced concrete elevated water storage tanks are structures that present special problems not encountered in typical environmental engineering concrete structures. This guide refers to ACI 350 for design and construction of those components of the pedestal tank in contact with the stored water, and to ACI 318 for design and construction of components not in contact with the stored water. Determination of snow, wind, and seismic loads based on ASCE/SEI 7 is included. These loads conform to the requirements of national building codes that use ASCE/SEI 7 as the basis for environmental loads as well as those of local building codes. Special requirements, based on successful experience, for the unique aspects of loads, analysis, design, and construction of concrete-pedestal tanks are composite tanks; concrete-pedestal tanks; earthquake-resistant structures; elevated water tanks; formwork construction. Document Details Author ACI Committee 371 Publication Year 2016 Pages 41 ISBN 9781945487002 Categories Tanks Formats PDF or Kindle Table of Contents CHAPTER 1— tank photosCHAPTER 2—NOTATION AND 3— common to both composite and concrete tank specific to composite specific to concrete tanksCHAPTER 4— recommendations common to both composite and concrete tank recommendations common to both composite and concrete tank of components common to both composite and concrete tank of components specific to composite of components specific to all-concrete tanksCHAPTER 5— common to both composite and concrete tank specific to composite specific to concrete tanksCHAPTER 6—GEOTECHNICAL considerationsCHAPTER 7—APPURTENANCES AND devices for steel floors within and lightingCHAPTER 8—REFERENCESAuthored referencesAPPENDIX A—GUIDE design wind steel concrete tank approximate period of vibration vertical load capacity derivation ERRATA INFO Any applicable errata are included with individual documents at the time of purchase. Errata are not included for collections or sets of documents such as the ACI Collection. For a listing of and access to all product errata, visit the Errata page. Return/Exchange Policy Printed / Hard Copy Products The full and complete returned product will be accepted if returned within 60 days of receipt and in salable condition. A 20% service charge applies. Return shipping fees are the customer’s responsibility. Electronic /Downloaded Products & Online Learning Courses These items are not eligible for return. Subscriptions These items are not eligible for return. Exchanges Contact ACI’s Customer Services Department for options + – ACICustomerService
Dari Perhitungan di atas, diperoleh volume yang harus ditampung ground reservoir di mana diambil volume yang terbesar m 3 jam jam 6 pagi + m 3 jam jam 8 malam = m 3 ≈ 390 m 3 Kapasitas Ground Reservoir Kecamatan Gunem Volume yang dibutuhkan 390 m 3 Direncanakan tinggi ground reservoir 3 m dan lantai dasar ground reservoir persegi P = L Maka dimensi ground reservoir yang lain V = P x L x t 390 m 3 = P x L x 3 m P x L = 130 m 2 P = 13 L = 10 m Jadi dimensi reservoir P = 13 m ; L = 10 m ; t = 3,5 m. 0,5 Freeboard. c. Rencana Desain Bangunan Ground Reservoir 1. Panjang bangunan = 13 m Lebar bangunan = 10 m Tinggi MA dari dasar = 3 m Tinggi jagaan = m Tinggi total bangunan = m 2. Tebal dinding beton = m 3. Tebal lantai beton = m 4. Plat atap beton = m 5. Mutu beton fc = 25 Mpa Mutu baja fy = 400 Mpa 6. Perhitungan struktur menggunakan program SAP dengan acuan buku ”Dasar – dasar Perencanaan Beton Bertulang ” dan ” Grafik dan Tabel Perhitungan Beton Bertulang ” berdasarkan SKSNI T 15 – 1991 – 03. d. Perhitungan Struktur Ground Reservoir Ground Reservoir direncanakan menggunakan struktur beton bertulang. Sebelumnya perlu dilakukan perhitungan terhadap pembebanan ground reservoir . Perhitungan pembebanan ground reservoir sebagai berikut ini Perhitungan Pelat Dasar Tebal plat h = 25 cm = 250 mm Lebar b = 1000 mm Penutup beton p = 40 mm Diameter tulangan utama direncanakan = ø 10 mm Dimeter tulangan bagi direncanakan = ø 8 mm Tinggi efektif adalah Arah x d x = h – p – ½ øD = 250 – 40 – ½ 10 = 205 mm Arah y d y = h – ρ – øD - ½ øS = 250 – 40 – 10 - ½ 8 = 196 mm Dengan spesifikasi - Mutu beton fc = 25 Mpa - Mutu baja fy = 400 Mpa Maka digunakan - ρ min = - ρ max = Dari perhitungan SAP didapat Momen Tumpuan - x = Momen Lapangan - x = Gambar Momen M11 Plat Dasar Arah x Momen Tumpuan - y = -6 Momen Lapangan - y = Gambar Momen M22 Plat Dasar Arah y Momen Tumpuan arah – x 2 .d b Mu = 2 205 . . 1 4 . 6 = kNm 2 ρ min = ρ max = ρ = diinterpolasi ρ min ρ ρ max dipakai ρ min = As = x = x 1000 x x 10 6 = 369 mm 2 digunakan tulangan ф 10 – 200 As terpasang 393 mm 2 Momen Lapangan arah – x 2 .d b Mu = 2 205 . . 1 67 . = kNm 2 ρ min = ρ max = ρ = diinterpolasi ρ min ρ ρ max dipakai ρ min = As = x = x 1000 x x 10 6 = 369 mm 2 digunakan tulangan ф 10 – 200 As terpasang 393 mm 2 Momen Tumpuan arah – y 2 .d b Mu = 2 196 . . 1 6 = kNm 2 ρ min = ρ max = ρ = diinterpolasi ρ min ρ ρ max dipakai ρ min = As = y = x 1000 x x 10 6 = mm 2 digunakan tulangan ф 8 – 125 As terpasang 402 mm 2 Momen Lapangan arah - y 2 .d b Mu = 2 196 . . 1 5 . = kNm 2 ρ min = ρ max = ρ = diinterpolasi ρ min ρ ρ max dipakai ρ min = As = y = x 1000 x x 10 6 = mm 2 digunakan tulangan ф 8 – 125 As terpasang 402 mm 2 Perhitungan Atap Tebal plat h = 20 cm = 200 mm Lebar b = 1000 mm Penutup beton p = 40 mm Diameter tulangan utama direncanakan = ø 10 mm Diameter tulangan bagi direncanakan = ø 10 mm Tinggi efektif adalah Arah x d x = h – p – ½ ø D = 200 – 40 – ½ 10 = 155 mm Arah y d y = h – p – øD - ½ øS = 200 – 40 – 10 - ½ 8 = 146 mm Dengan spesifikasi - Mutu beton fc = 25 Mpa - Mutu baja fy = 400 Mpa Maka digunakan - ρ min = - ρ max = Dari perhitungan SAP didapat Momen Tumpuan - x = -36 Momen Lapangan - x = 23 Gambar Momen M22 Plat Atap Arah x Momen Tumpuan - y = Momen Lapangan - y = Gambar Momen M22 Plat Atap Arah y Momen Tumpuan arah – x 2 .d b Mu = 2 155 . . 1 36 = kNm 2 ρ min = ρ max = ρ = diinterpolasi ρ min ρ ρ max dipakai ρ = As = x = x 1000 x x 10 6 = mm 2 digunakan tulangan ф 10 – 75 As terpasang 1047 mm 2 Momen Lapangan arah – x 2 .d b Mu = 2 155 . . 1 23 = kNm 2 ρ min = ρ max = ρ = diinterpolasi ρ min ρ ρ max dipakai ρ = As = x = x 1000 x x 10 6 = mm 2 digunakan tulangan ф 10 – 150 As terpasang 524 mm 2 Momen Tumpuan arah – y 2 .d b Mu = 2 146 . . 1 5 . 31 = kNm 2 ρ min = ρ max = ρ = diinterpolasi ρ min ρ ρ max dipakai ρ = As = y = x 1000 x x 10 6 = 730 mm 2 digunakan tulangan ф 8 – 50 As terpasang 1005 mm 2 Momen Lapangan arah - y 2 .d b Mu = 2 146 . . 1 2 . 14 = kNm 2 ρ min = ρ max = ρ = diinterpolasi ρ min ρ ρ max dipakai ρ = As = y = x 1000 x x 10 6 = mm 2 digunakan tulangan ф 8 – 150 As terpasang 335 mm 2 Perhitungan Dinding Tebal plat = 20 cm = 200 mm Penutup beton p = 40 mm Diameter tulangan utama direncanakan = ø 10 mm Dimeter tulangan bagi direncanakan = ø 8 mm Tinggi efektif adalah Arah x d x = h – p – ½ øD = 200 – 40 – ½ 10 = 155 mm Arah y d y = h – p – øD - ½ øS = 200 – 40 – 10 - ½ 8 = 146 mm Dengan spesifikasi - Mutu beton fc = 25 Mpa - Mutu baja fy = 400 Mpa Maka digunakan - ρ min = - ρ max = Dinding arah xz Dari perhitungan SAP didapat Momen Tumpuan - x = -7,5 Momen Lapangan - x = 5 Gambar Momen M22 Plat dinding arah x Pu Tumpuan - x = - 40 Pu Lapangan - x = 25 Gambar Gaya Aksial F22 Plat dinding arah x Momen Tumpuan arah – x e 1 = Pu Mu = 40 5 , 7 = m = 187,5 mm h e 1 = 1000 5 , 187 = 0,1875 ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ . 85 , . c gr u f A P φ . ⎥⎦ ⎤ ⎢⎣ ⎡ h e 1 = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ 25 . 85 , . 200 . 1000 . 65 , 40000 . 0,1875 = 0,0027 Dari grafik tulangan kolom Grafik dan Tabel Perhitungan Beton Bertulang Didapat r = 0,0020 ; β = 1,0 ρ = r . β = 0,0020 . 1,0 = 0,0020 Tulangan Utama As tot = ρ . = 0,0020 . 200 . 1000 = 400 mm 2 digunakan tulangan ф 10 – 175 As terpasang 449 mm 2 Momen Lapangan arah – x e 1 = Pu Mu = 25 5 = m = 200 mm h e 1 = 1000 200 = 0,2 ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ . 85 , . c gr u f A P φ . ⎥⎦ ⎤ ⎢⎣ ⎡ h e 1 = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ 25 . 85 , . 200 . 1000 . 65 , 5000 . 0,2 = 0,0004 Dari grafik tulangan kolom Grafik dan Tabel Perhitungan Beton Bertulang Didapat r = 0,00155 ; β = 1,0 ρ = r . β = 0,00155 . 1,0 = 0,00155 Tulangan Utama As tot = ρ . = 0,00155 . 200 . 1000 = 310 mm 2 digunakan tulangan ф 10 – 250 As terpasang 314 mm 2 Tulangan bagi diambil 20 .As Tumpuan = 20 . 400 mm 2 = 80 mm 2 digunakan tulangan ф 8 – 250 As terpasang 201 mm 2 Lapangan = 20 . 310 mm 2 = 62 mm 2 digunakan tulangan ф 8 – 250 As terpasang 201 mm 2 Dinding arah yz Dari perhitungan SAP didapat Momen Tumpuan - y = -19 Momen Lapangan - y = 3,8 Gambar Momen M22 plat dinding arah y Gaya Aksial Pu Tumpuan - y = -44 Gaya Aksial Pu lapangan - y = 27,5 Gambar Gaya Aksial F22 plat dinding arah y Momen Tumpuan arah – y e 1 = Pu Mu = 44 19 = 0,432m = 432 mm h e 1 = 1000 432 = 0,432 ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ . 85 , . c gr u f A P φ . ⎥⎦ ⎤ ⎢⎣ ⎡ h e 1 = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ 25 . 85 , . 200 . 1000 . 65 , 44000 . 0,432 = 0,00688 Dari grafik tulangan kolom Grafik dan Tabel Perhitungan Beton Bertulang Didapat r = 0,0025 ; β = 1,0 ρ = r . β = 0,0025 . 1,0 = 0,0025 Tulangan Utama As tot = ρ . b. h = 0,0025 . 200 . 1000 = 500 mm 2 digunakan tulangan ф 10 – 150 As terpasang 524 mm 2 Momen Lapangan arah - y e 1 = Pu Mu = 5 , 27 8 , 3 = 0,1382 m = 138,2 mm h e 1 = 1000 2 , 138 = 0,1382 ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ . 85 , . c gr u f A P φ . ⎥⎦ ⎤ ⎢⎣ ⎡ h e 1 = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ 25 . 85 , . 200 . 1000 . 65 , 40000 . 0,1382 = 0,0014 Dari grafik tulangan kolom Grafik dan Tabel Perhitungan Beton Bertulang Didapat r = 0,0017 ; β = 1,0 ρ = r . β = 0,0017 . 1 = 0,0017 Tulangan Utama As tot = ρ . = 0,0017 . 200 . 1000 = 340 mm 2 digunakan tulangan ф 10 – 225 As terpasang 349 mm 2 Tulangan bagi diambil 20 .As tumpuan = 20 . 500 mm 2 = 100 mm 2 digunakan tulangan ф 8 – 250 As terpasang 201 mm 2 Lapangan = 20 . 340 mm 2 = 68 mm 2 digunakan tulangan ф 8 – 250 As terpasang 201 mm 2 Tabel Rangkuman Penulangan Ground Reservoir Komponen Struktur Ukuran Penulangan - Pelat Atas Tebal 200 mm Tumpuan arah – x P10 - 75 Lapangan arah – x P10 - 150 Lapangan arah – y P8 - 50 Lapangan arah – y P8 - 150 - Pelat Dinding Tebal 200 mm Tumpuan arah – xz P10 -175 Lapangan arah – xz P10 - 250 Tulangan bagi – xz P8 - 250 Tumpuan arah – yz P10 -150 Lapangan arah – yz P10 - 225 Tulangan bagi – yz P8 – 250 - Pelat Dasar Tebal 250 mm Tumpuan arah – x P10 - 200 Lapangan arah – x P10 - 200 Lapangan arah – y P8 - 125 Lapangan arah – y P8 - 125 Sumber Hasil Perhitungan, 2008 Gambar Pemodelan Ground Reservoir pada program SAP PERENCANAAN TEKNIS PIPA TRANSMISI